
AUTHOR

Thomas Asel
Orientation in Objects GmbH

Published: 11.3.2011

ABSTRACT

When starting with JSF one of the common pitfalls is how to pass values or parameters
efficiently. In many cases developers end up putting Managed Beans in Session Scope
to share Bean attributes though more appropriate solutions are available. This article
lists some routine tasks for JSF developers and gives tips and tricks on how to pass
values efficiently without having to pollute the session-object. The intended audience
for this article are novice JSF developers as well as developers that are interested in
alternative solutions to common problems.

Java, XML, UML, XSLT, Open Source, JBoss, SOAP, CVS, Spring, JSF, Eclipse

Trivadis Germany GmbH

Weinheimer Str. 68
D-68309 Mannheim

Tel. +49 (0) 6 21 - 7 18 39 - 0
Fax +49 (0) 6 21 - 7 18 39 - 50

www.oio.dekontakt@trivadis.com

JSF Best Practices
Scope management for clean sessions

) Schulung)

) Beratung)

) Entwicklung)

)
A

rt
ik

el
)

http://www.oio.de
mailto:kontakt@trivadis.com

SESSION POLLUTION AND WHY IT IS
HAZARDOUS

Admittedly, putting all your Managed Beans in Session Scope may
be a working solution for some problems encountered while
developing web applications with JSF. But it bears a high potential
for undesired behavior, which is mostly not noticed until real
problems arise. Problems caused by wrong Bean Scopes are often
hard to trace and require profound knowledge of the JSF framework
(and the fundamental principles of web applications in general).
This is why particularly developers new to JSF get easily in trouble
by excessively using Session Scoped Beans.

There are a few simple questions to consider when dealing with
Session Scope:

1. Is the instantiated object required available throughout
the entire user session?

The session spans over all requests and may involve
traversing over your whole application.

2. Is your code thread-safe?

The Session object is shared among all threads initiated
by the same user. This may cause problems when objects
are accessed concurrently e.g. when the user opens a
second browser tab of the application. Concurrency
problems are hard to discover, particullarly in the
presentation tier where unit testing may be complicated,
due to technical difficulties or, in some cases, simply is not
possible.

3. How does a larger session object affect your systems
performance?

This question can often only be answered by observing
the system under load. Unfortunately, performance
problems are often perceived very late: When the software
is already deployed and performs poor in the production
environment. At least, keep in mind that heavier session
objects require more physical memory.

4. How does session-wide accessibility of Managed Beans
affect your software architecture?

Consider architectural principles like loose coupling,
information hiding, etc. Is your intended architecture
breached by exposing a certain object throughout a
session? Even when you are frequently evaluating your
implementation against your intended architecture (which
is highly recommended to do!), scopes are a rather
technical aspect. This stipulates for your analysis tools to
understand these technical aspects by evaluating
proprietary annotations, metadata and configuration
artifacts.

With these considerations about session pollution and the resulting
risks let’s take a look at common scenarios in JSF development.
The following sections discuss three scenarios commonly
encountered in almost every web application.

PASSING INFORMATION TO HANDLERS

Consider a simple view related to a single Managed Bean. Further,
think about a Command Button triggering an action method. How
can the action method know about the command button it was
triggered from? And even more interesting: How can the context
in which the button was pressed also be passed on to the method?
A simple example:

Figure 1: Example 1

Regardless which one of the h:commandButtons is pressed, they
are all triggering the same action method. The method contains
some logic to process the respective set of data (displayed in the
tables rows). But how exactly does the method know which set of
data it is to process? Lets take a look at the view definition for this
example:

...
<h:form>
<h1><h:outputText value="Example 1"/></h1>
<h:dataTable value="#{adressTableBeanExample1.addresses}"
var="address" >
<h:column>
<f:facet name="header" >

<h:outputText value="Name"/>
</f:facet>
<h:outputText value="#{address.name}" />
</h:column>
<h:column>
<f:facet name="header" >

<h:outputText value="Street"/>
</f:facet>
<h:outputText value="#{address.street}" />
</h:column>
<h:column>
<f:facet name="header" >

<h:outputText value="ZIP"/>
</f:facet>
<h:outputText value="#{address.zipCode}" />
</h:column>
<h:column>
<f:facet name="header" >

<h:outputText value="City"/>
</f:facet>
<h:outputText value="#{address.city}" />
</h:column>
<h:column>
<h:commandButton value="delete"
action="#{adressTableBeanExample1.delete}"/>

</h:column>
</h:dataTable>
</h:form>
...

Example 1: View Definition for Example 1

This is a standard task and encountered in almost every
web-application. The following sections discuss some approaches
to solve the problem described above.

JSF Best Practices© Trivadis Germany GmbH
Seite 2 von 8www.oio.de

k o n t a k t @ t r i v a d i s . c o m

http://www.oio.de
mailto:kontakt@trivadis.com
mailto:kontakt@trivadis.com

SETTING A PROPERTY ON THE MANAGED BEAN

An easy solution is to simply fill a certain property in the managed
bean. Your Managed Bean may contain a property named "selected"
to hold the set of data that was selected by the user when clicking
the h:commandButton. Since JSF 1.2 a tag is offered to
conveniently set a property in a corresponding Managed Bean
called f:setPropertyActionListener. Don’t get confused by the bulky
tag name as it describes the tags purpose pretty well. When using
the f:setPropertyActionListener within a component, an Action
Listener is created by the framework. This Action Listener fills the
targeted value of the Managed Bean with a given value. The above
example using an f:setPropertyActionListener looks like this:

...
<h:column>
<h:commandButton value="delete"
action="#{adressTableBeanExample1.delete}" >
<f:setPropertyActionListener
target="#{adressTableBeanExample1.selected}"
value="#{address}" />

</h:commandButton>
</h:column>
...

Example 2: View Definition for Example 1 using
f:setPropertyActionListener

With the implicitly created Action Listeners filling the property in
the Managed Bean, all you need to do to provide availability of the
selected data in the Action Method is to simply access the beans
"selected" property:

...
public String delete(){
addresses.remove(selected);
return "";
}
...

Example 3: Action Method in Backing Bean for Example 1

Although very simple and handy this solution has some drawbacks:

• Selected values need to be all of the same type

• With lots of different selections on the same page, your
Managed Bean may grow quickly, resulting in reduced
cohesion and thus, more important, poor maintainability.

However, unless your view isn’t very complex and therefore a
single selection is all you need, this may be the method of choice
for you.

ADDING PARAMETERS TO THE COMMAND
COMPONENT

The following approach eliminates the drawbacks of the prior one,
by introducing parameters to the Command Component. While
f:setPropertyActionListener requires to be placed (at least
somewhere) within a component derived from ActionSource, every
component derived from UIComponent (which is true for every
component represented by a tag in views) is capable of carrying
parameters. By adding the selected dataset as parameter to the
h:commandButton, this parameter is available whenever you are
dealing with this component. Compared to Action Methods, Action
Listeners are aware of the ActionEvent that triggered the action.
Action Events refer to the component triggering the event, in this
case the h:commandButton. Having Access to the component, all
parameters are accessible, so all you need to do is to call the
components getChildren() method to access the nested
components – including the nested parameters.

...
<h:column>
<h:commandButton value="delete"
actionListener="#{addressTableBeanExample2.delete}">
<f:param name="selected" value="#{address}" />
</h:commandButton>
</h:column>
...

Example 4: View Definition for Example 2 using f:param

...
public void delete(ActionEvent event){
for(UIComponent component :
event.getComponent().getChildren()){
if(component instanceof UIParameter){
UIParameter param = (UIParameter) component;
if(param.getName().equals("selected")){
addresses.remove(param.getValue());
}
}
}
}
...

Example 5: ActionListener in Backing Bean for Example 2

As you can see, the Action Method from the previous example has
changed to an Action Listener. Please note that since the
h:commandButton may contain multiple parameters, the Listener
is responsible of checking for the parameter name to avoid
evaluation of wrong parameters.

The major drawback of this solution is that it is code intensive. You
have to access the component and need to write some logic to
traverse its children. Keep in mind that components may also have
further child components besides f:param, therefore you also need
to check for the correct type of the nested child components. When
dealing with multiple parameters you also need to distinguish them
by name, which requires additional code. Since Action Listeners
are used quite frequently, this approach can often be found,
especially in Ajax-intensive applications.

ADDING ATTRIBUTES TO THE COMMAND
COMPONENT

A more convenient approach, due to reduction of required code,
is to add the desired dataset as an attribute to the component
instead of nesting it as a child parameter component. When adding
objects as attributes to components, these objects are available
through the components attribute map. The following code shows
the above example using f:attribute instead of f:param

...
<h:column>
<h:commandButton value="delete"
actionListener="#{addressTableBeanExample3.delete}" >
<f:attribute name="selected" value="#{address}" />
</h:commandButton>
</h:column>
...

Example 6: View Definition for Example 3 using f:attribute

...
public void delete(ActionEvent event){
Address selected = (Address) event.getComponent().
getAttributes().get("selected");
addresses.remove(selected);
}
...

Example 7: Action Listener in Backing Bean for Example 3

JSF Best Practices© Trivadis Germany GmbH
Seite 3 von 8www.oio.de

k o n t a k t @ t r i v a d i s . c o m

http://www.oio.de
mailto:kontakt@trivadis.com
mailto:kontakt@trivadis.com

The main differences between usage of f:attribute and f:param is
that parameters are added to the closest UIComponent associated
with a custom action, requiring f:param to be placed as child
component somewhere underneath a component implementing
the ActionSource interface. While this is valid only for
CommandComponents, attributes may be added to every kind of
UI Component, e.g. input components like input text fields,
implementing the ValueHolder interface instead of ActionSource.

Compared to the previous example, the Action Listener became
pretty lean this time. The Listener in this example simply assumes
that the parameter named "selected" is an instance of the Address
class. Please note that this may lead to errors during runtime when
changing the attributes value in the view definition to another EL
expression referencing a different type . Until today IDE’s lack on
type checking mechanisms for attributes defined in JSF views.

PASSING VALUES TO CONVERTERS AND
VALIDATORS

The benefit of Validators or Converters is often increased by
enabling them to deal with parameters. It is worth thinking about
a dedicated Validator class to keep your Managed Beans slim and
maintainable whenever a Validator contains a lot of logic. But even
if you decide to keep validation in the Managed Bean, passing
parameters as described in the previous two sections is an option
to keep your code a bit smarter by simply attaching an f:attribute
to the component. You can access the attribute within your
validation method via the component since it is passed as an
argument to the validation method. Validation methods give
developers access to all the information needed, as their signature
is like

public void validate(FacesContext ctx,
UIComponent component,
Object toValidate)

The same principle can be applied to Converters since the
component is passed as argument in both methods,
getAsString(…) and getAsObject(…).

PASSING VALUES IN TABLES

So far the concepts for passing values to handlers were applied
within h:dataTables. Passing values to handlers is easily achieved
by placing a command component in a table column. Clicks on the
command component may trigger an Action Method or Action
Listener, the information about which data row to process may be
passed as attribute or parameter. The following code shows an
example with an ActionListener using an Attribute to describe the
selected table row.

...
<h:dataTable value="#{addressTableBeanExample4.data}"
var="data">
<h:column id="firstname">
<f:facet name="header">
<h:outputText value="Firstname"/>
</f:facet>
<h:outputText value="#{data.firstname}" />
</h:column>
<h:column id="lastname">
<f:facet name="header">
<h:outputText value="Lastname" />
</f:facet>
<h:outputText value="#{data.lastname}" />
</h:column>
<h:column id="customerId">
<f:facet name="header">
<h:outputText value="Customer ID" />
</f:facet>
<h:outputText value="#{data.customerId}" />
</h:column>
<h:column id="action">
<h:commandButton value="Select" actionListener=
"#{addressTableBeanExample4.selectionListener}">
<f:attribute name="selection" value="#{data}"/>
</h:commandButton>
</h:column>
</h:dataTable>
...

Example 8: View Definition for Example 4 using an ActionListener
with f:attribute

...
@ManagedBean(name="addressTableBeanExample4")
@ViewScoped
public class ExampleBean4 implements Serializable{
private static final long serialVersionUID = 1L;
private transient List<Customer> data = new
ArrayList<Customer>() ;
private Customer selected;
public ExampleBean4(){
// create example data model
data.add(new Customer("Homer","Simpson",80085));
data.add(new Customer("Barney","Gumble",83321));
data.add(new Customer("Ned","Flanders",81813));
}
public void selectionListener(ActionEvent event){
Customer customer = (Customer) event.getComponent().
getAttributes().get("selection");
this.selected = customer;
}
public Customer getSelected() {
return selected;
}
public void setSelected(Customer selected) {
this.selected = selected;
}
public List<Customer> getData() {
return data;
}
public void setData(List<Customer> data) {
this.data = data;
}
}

Example 9: Backing Bean Definition for Example 4

While the previous example requires explicit definition of an
f:actionListener, JSF offers a more data centric approach using a
distinct data model for DataTables. The preceding example used
a value binding to a collection containing the data to display. Using
a reference to a DataModel instance instead of a collection offers
a more convenient way to access the selected data set:

JSF Best Practices© Trivadis Germany GmbH
Seite 4 von 8www.oio.de

k o n t a k t @ t r i v a d i s . c o m

http://www.oio.de
mailto:kontakt@trivadis.com
mailto:kontakt@trivadis.com

...
<h:dataTable value="#{addressTableBeanExample5.data}"
var="data">
<h:column id="firstname">
<f:facet name="header">
<h:outputText value="Firstname"/>
</f:facet>
<h:outputText value="#{data.firstname}" />
</h:column>
<h:column id="lastname">
<f:facet name="header">
<h:outputText value="Lastname" />
</f:facet>
<h:outputText value="#{data.lastname}" />
</h:column>
<h:column id="customerId">
<f:facet name="header">
<h:outputText value="Customer ID" />
</f:facet>
<h:outputText value="#{data.customerId}" />
</h:column>
<h:column id="action">
<h:commandButton value="Select"
action="#{addressTableBeanExample5.select}"/>

</h:column>
</h:dataTable>
...

Example 10: View Definition for Example 5

...
@ManagedBean(name="addressTableBeanExample5")
@ViewScoped
public class ExampleBean5 implements Serializable{
private static final long serialVersionUID = 1L;
private transient ListDataModel<Customer> data =
new ListDataModel<Customer>() ;
private Customer selected;
public ExampleBean5(){
// create example data model
List<Customer> customers = new ArrayList<Customer>();
customers.add(new Customer("Homer","Simpson",80085));
customers.add(new Customer("Barney","Gumble",83321));
customers.add(new Customer("Ned","Flanders",81813));
this.data.setWrappedData(customers);
}
public Customer getSelected() {
return selected;
}
public void setSelected(Customer selected) {
this.selected = selected;
}
public ListDataModel<Customer> getData() {
return data;
}
public void setData(ListDataModel<Customer> data) {
this.data = data;
}
public String select(){
this.selected = data.getRowData();
return "";
}
}
...

Example 11: Backing Bean using a DataModel in Example 5

As you can see in the code example above, JSF takes care of
informing the data model which distinct data set was selected .
When an ActionSource is triggered, JSF takes notice about the
related element of the wrapped data and updates the table model.
Accessing the selected data set is made easy using the
getRowData() Method of the TableModel. Please note the difference
between the ActionListener in Example 4 and the ActionMethod
in this example.

SHARING INFORMATION BETWEEN VIEWS

USING F:SETPROPERTYACTIONLISTENER

The usage of the f:setPropertyActionListener tag has been
discussed earlier. The example in section one described how the
tag can be used to set a managed bean property. The same
approach can be used to set a property on a managed bean that
belongs to the next view to display. Simply add the
f:setPropertyActionListener tag as child component to the
command component triggering an action method (or using JSF
2’s implicit navigation feature) and associate the target attribute to
a property on the next views managed bean:

...
<h:form id="form">
...
<h:inputText value="#{exampleBean6a.input}" />
<h:commandButton value="submit" action="example6b.xhtml">
<f:setPropertyActionListener value="#{exampleBean6a.input}"
target="#{exampleBean6b.value}"/>

</h:commandButton>
</h:form>
...

Example 12: View Defintion of first view in Example 6

...
<h:form id="form">
...
<h:outputText value="Passed Value: " />
<h:outputText value="#{exampleBean6b.value}" />
</h:form>
...

Example 13: View Defintion of 2nd view in Example 6

The Backing Beans of both views are nothing more but simple
POJO's containing accessor methods for a single attribute (and of
course, both could easily be implemented as instances of the same
class):

...
@ManagedBean
@RequestScoped
public class ExampleBean6a implements Serializable{
private static final long serialVersionUID = 1L;
private String input;
public String getInput() {
return input;
}
public void setInput(String input) {
this.input = input;
}
}
@ManagedBean
@RequestScoped
public class ExampleBean6b implements Serializable{
private static final long serialVersionUID = 1L;
public ExampleBean6b(){
}
private String value;
public String getValue() {
return value;
}
public void setValue(String value) {
this.value = value;
}
}
...

Example 14: Backing Beans of Example 6

JSF Best Practices© Trivadis Germany GmbH
Seite 5 von 8www.oio.de

k o n t a k t @ t r i v a d i s . c o m

http://www.oio.de
mailto:kontakt@trivadis.com
mailto:kontakt@trivadis.com

The question here is: Why is this working? A good question, since
the instance of the managed bean for the following view is not
expected to be created before the "Render Response" Phase of the
lifecycle (unless the managed beans scope is anything else then
request). When f:setPropertyActionListener is used, instantiation
happens by the time of executing the implicitly generated Action
Listener, that is before the "Invoke Application" phase of the
lifecycle. Thus, the Managed Bean for the following view is already
available when reaching the "Render Response" phase.

ACTION LISTENER

The usage of f:setPropertyActionListener is a convenient way to
store values in Managed Beans of subsequent views. However,
though more code intensive, the same effect can be achieved by
manually designed ActionListeners. This approach gives you the
ability to process values before storing them in another Managed
Bean. However, this may also tempt to put logic in the Presentation
Layer that belongs elsewhere. Keep in mind, that JSF offers
concepts for conversation and validation whenever you think about
data transformation when passing values to managed beans using
an Action Listener.

FLASHSCOPE

With JSF2 a new feature called "Flash" was introduced. It is inspired
by the Ruby on Rails Framework and offers a convenient way to
pass information between views. Though often mistakenly referred
to as "Flash Scope", the Flash is not a scope like the request or
session scope. It is rather a map managed by the framework. It is
capable of holding a value until the next view is processed, so you
would not want to put an entire managed bean in the "Flash Scope".

The following example shows how the Flash can be used to pass
an input from one view to another. There is a request scoped
backing bean for the second view only. Note how the Flash is
injected in the backing bean using the @ManagedProperty
annotation. You could also access the Flash programmatically by
calling FacesContext.getCurrentInstance()
.getExternalContext().getFlash() but having the Flash
injected into the bean is more convenient.

...
<h:form id="form">
...
<h:outputText value="Enter a value into the Flash"/>
<h:inputText value="#{flash.inputText}" />
<h:commandButton value="submit" action="example7b.xhtml"
/>
</h:form>
...

Example 15: View Definition for first view in Example 7

...
<h:form id="form">
...
<h:outputText value="Value From Flash:"/>
<h:outputText value="#{flashExampleBean.inputFromFlash}"
/>
<h:commandButton value="back" action="example7a.xhtml" />
</h:form>
...

Example 16: View Definition for 2nd view in Example 7

...
@ManagedBean
@RequestScoped
public class FlashExampleBean implements Serializable{
@ManagedProperty("#{flash}")
private Flash flash;
public String getInputFromFlash(){
String inputText = (String) flash.get("inputText");
flash.keep("inputText");
return inputText;
}
public void setFlash(Flash flash) {
this.flash = flash;
}
public Flash getFlash() {
return flash;
}
}
...

Example 17: Backing Bean Definition for 2nd view in Example 7

You may have noticed the call to flash.keep() in the backing beans
getter method. This tells the flash to keep the value for another
subsequent request as values stored in the Flash during request
N are only available throughout the request N+1 unless the Flash
is told to keep it for another request. By calling Flash.keep() we
asure that the input is still available when returning to the first page
by pressing the back button.

WHEN TO USE SESSION-SCOPE

The previous sections discussed several methods to pass values
to handlers and between views without bloating the session. Finally
we should take a look at scenarios where session scope should be
used. As mentioned in the beginning of this article, objects stored
in session scope remain until the end of the user session or until
they are removed programmatically. A common scenario where
an object is used throughout the entire lifetime of the user session
is authentication. Consider a login screen where the user has to
enter its credentials. If authentication is successful the user session
is associated with an object representing the authenticated user.
It may contain the users name, its customer id etc. This object may
be used throughout the entire session to decide for example the
look and feel of the application, the options given to the user and
the general behavior of the application for this particular user.

It is totally vital to have a session scoped managed bean in your
JSF application that stores information needed throughout the user
session, but it is good practice to have only one session bean. If
you feel you need more, think about the basic design of your
application.

CONCLUSION

To review the usage of beans with session scope is one of the easy
winners for every reviewer of most real world JSF applications.
The main goal of this article is to discuss common scenarios of
improperly session scoped beans and to give advice on how to
prevent this. Of course all this does not mean that session scope
is a bad thing. The usage of session scoped beans may be totally
valid. However, developers need to be sure that their intended
solution is not only working for a single use case but also free from
side effects. This article hopefully helps to shed some light on the
side effects of improper usage of session scopes. And where not
– if you remind one thing: Always have some reasons for using
state in a session.

The complete source code of the examples is available from [1].
Plese read the license file license.txt

JSF Best Practices© Trivadis Germany GmbH
Seite 6 von 8www.oio.de

k o n t a k t @ t r i v a d i s . c o m

http://www.oio.de
mailto:kontakt@trivadis.com
mailto:kontakt@trivadis.com

The sources are contained in a ZIP archive as Eclipse project. The
sources were developed on Mojarra 2.0.3, though any JSF 2.0
compliant implementation should be fine. Be sure to include the
JSF libraries jsf-api.jar and jsf-impl.jar in WebContent/WEB-INF/lib.
The libraries can be obtained from ORACLE's Mojarra project [2]
or MyFaces [3], the open source implementation of JSF.

JSF Best Practices© Trivadis Germany GmbH
Seite 7 von 8www.oio.de

k o n t a k t @ t r i v a d i s . c o m

http://www.oio.de
mailto:kontakt@trivadis.com
mailto:kontakt@trivadis.com

REFERENCES:

• [1] Source code of the examples
JSF-Best-Practices.zip (/public/java/jsf/JSF-Best-Practices.zip)

• [2] JSF Implementation Mojarra
http://javaserverfaces.java.net/ (http://javaserverfaces.java.net/)

• [3] JSF Implementation MyFaces
http://myfaces.apache.org/ (http://myfaces.apache.org/)

JSF Best Practices© Trivadis Germany GmbH
Seite 8 von 8www.oio.de

k o n t a k t @ t r i v a d i s . c o m

/public/java/jsf/JSF-Best-Practices.zip
http://javaserverfaces.java.net/
http://myfaces.apache.org/
http://www.oio.de
mailto:kontakt@trivadis.com
mailto:kontakt@trivadis.com

	Abstract
	Session pollution and why it is hazardous
	Passing information to handlers
	Setting a property on the Managed Bean
	Adding parameters to the command component
	Adding attributes to the command component
	Passing values to Converters and Validators
	Passing Values in Tables

	Sharing information between views
	Using f:setPropertyActionListener
	Action Listener
	FlashScope

	When to use Session-Scope
	Conclusion

